63 research outputs found

    Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review

    Get PDF
    Transcranial magnetic stimulation (TMS) was introduced as a non-invasive tool for the investigation of the motor cortex. The repetitive application (rTMS), causing longer lasting effects, was used to study the influence on a variety of cerebral functions. High-frequency (>1 Hz) rTMS is known to depolarize neurons under the stimulating coil and to indirectly affect areas being connected and related to emotion and behavior. Researchers found selective cognitive improvement after high-frequency (HF) stimulation specifically over the left dorsolateral prefrontal cortex (DLPFC). This article provides a systematic review of HF-rTMS studies (1999–2009) stimulating over the prefrontal cortex of patients suffering from psychiatric/neurological diseases or healthy volunteers, where the effects on cognitive functions were measured. The cognitive effect was analyzed with regard to the impact of clinical status (patients/healthy volunteers) and stimulation type (verum/sham). RTMS at 10, 15 or 20 Hz, applied over the left DLPFC, within a range of 10–15 successive sessions and an individual motor threshold of 80–110%, is most likely to cause significant cognitive improvement. In comparison, patients tend to reach a greater improvement than healthy participants. Limitations concern the absence of healthy groups in clinical studies and partly the absence of sham groups. Thus, future investigations are needed to assess cognitive rTMS effects in different psychiatric disorders versus healthy subjects using an extended standardized neuropsychological test battery. Since the pathophysiological and neurobiological basis of cognitive improvement with rTMS remains unclear, additional studies including genetics, experimental neurophysiology and functional brain imaging are necessary to explore stimulation-related functional changes in the brain

    Thinking about Eating Food Activates Visual Cortex with Reduced Bilateral Cerebellar Activation in Females with Anorexia Nervosa: An fMRI Study

    Get PDF
    Background: Women with anorexia nervosa (AN) have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown. Methods: Functional magnetic resonance imaging (fMRI) examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN) and 24 age-matched controls (HC). Results: Group contrasts between HC and AN revealed reduced activation in AN in the bilateral cerebellar vermis, and increased activation in the right visual cortex. Preliminary comparisons between AN subtypes and healthy controls suggest differences in cortical and limbic regions. Conclusions: These preliminary data suggest that thinking about eating food shown in images increases visual and prefrontal cortical neural responses in females with AN, which may underlie cognitive biases towards food stimuli and ruminations about controlling food intake. Future studies are needed to explicitly test how thinking about eating activates restraint cognitions, specifically in those with restricting vs. binge-purging AN subtypes

    Acute and repetitive fronto-cerebellar tDCS stimulation improves mood in non-depressed participants

    Get PDF

    A thalamic reticular networking model of consciousness

    Get PDF
    <p>Abstract</p> <p>[Background]</p> <p>It is reasonable to consider the thalamus a primary candidate for the location of consciousness, given that the thalamus has been referred to as the gateway of nearly all sensory inputs to the corresponding cortical areas. Interestingly, in an early stage of brain development, communicative innervations between the dorsal thalamus and telencephalon must pass through the ventral thalamus, the major derivative of which is the thalamic reticular nucleus (TRN). The TRN occupies a striking control position in the brain, sending inhibitory axons back to the thalamus, roughly to the same region where they receive afferents.</p> <p>[Hypotheses]</p> <p>The present study hypothesizes that the TRN plays a pivotal role in dynamic attention by controlling thalamocortical synchronization. The TRN is thus viewed as a functional networking filter to regulate conscious perception, which is possibly embedded in thalamocortical networks. Based on the anatomical structures and connections, modality-specific sectors of the TRN and the thalamus appear to be responsible for modality-specific perceptual representation. Furthermore, the coarsely overlapped topographic maps of the TRN appear to be associated with cross-modal or unitary conscious awareness. Throughout the latticework structure of the TRN, conscious perception could be accomplished and elaborated through accumulating intercommunicative processing across the first-order input signal and the higher-order signals from its functionally associated cortices. As the higher-order relay signals run cumulatively through the relevant thalamocortical loops, conscious awareness becomes more refined and sophisticated.</p> <p>[Conclusions]</p> <p>I propose that the thalamocortical integrative communication across first- and higher-order information circuits and repeated feedback looping may account for our conscious awareness. This TRN-modulation hypothesis for conscious awareness provides a comprehensive rationale regarding previously reported psychological phenomena and neurological symptoms such as blindsight, neglect, the priming effect, the threshold/duration problem, and TRN-impairment resembling coma. This hypothesis can be tested by neurosurgical investigations of thalamocortical loops via the TRN, while simultaneously evaluating the degree to which conscious perception depends on the severity of impairment in a TRN-modulated network.</p

    The effects of rTMS on impulsivity in normal adults: a systematic review and meta-analysis

    Get PDF
    Background: Impulsivity is a multi-dimensional construct that is regarded as a symptom of many psychiatric disorders. Harm resulting from impulsive behaviour can be substantial for the individuals concerned, people around them and the society they live in. Therefore, the importance of developing therapeutic interventions to target impulsivity is paramount. Aims and methods: We conducted a systematic review and meta-analysis of the literature from AMED, Embase, Medline, and PsycINFO databases on the use of repetitive transcranial magnetic stimulation (rTMS) in healthy adults to modulate different subdomains (motor, temporal and reflection) of impulsivity. Results: The results indicated that rTMS has distinct effects on different impulsivity subdomains. It has a significant, albeit small, effect on modulating motor impulsivity (g = 0.30, 95% CI, 0.17 to 0.43, p < .001) and a moderate effect on temporal impulsivity (g = 0.59, 95% CI, 0.32 to 0.86, p < .001). Subgroup analyses (e.g., excitatory vs. inhibitory rTMS, conventional rTMS vs. theta burst stimulation, analyses by stimulation sites, and type of outcome measure used) identified key parameters associated with the effects of rTMS on motor and temporal impulsivity. Age, sex, stimulation intensity and the number of pulses were not significant moderators for effects of rTMS on motor impulsivity. Due to lack of sufficient data to inform a meta-analysis, it has not been possible to assess the effects of rTMS on reflection impulsivity. Conclusions: The present findings provide preliminary evidence that rTMS can be used to modulate motor and temporal impulsivity in healthy individuals. Further studies are required to extend the use of rTMS to modulate impulsivity in those at most risk of engaging in harmful behaviour as a result of impulsivity, such as patients with offending histories and those with a history of self-harming behaviour

    The role of the posterior cerebellum in dysfunctional social sequencing

    No full text
    Recent advances in social neuroscience have highlighted the critical role of the cerebellum in social cognition, and especially the posterior cerebellum. Studies have supported the view that the posterior cerebellum builds internal action models of our social interactions to predict how other people’s actions will be executed, what our most likely responses are to these actions. This mechanism allows to better anticipate action sequences during social interactions in an automatic and intuitive way and to fine-tune these anticipations, making it easier to understand other’s social behaviors and mental states (e.g., beliefs, intentions, traits). In this paper, we argue that the central role of the posterior cerebellum in identifying and automatizing social action sequencing provides a fruitful starting point for investigating social dysfunctions in a variety of clinical pathologies, such as autism, obsessive-compulsive disorder, depression, and addiction. Our key hypothesis is that dysfunctions of the posterior cerebellum lead to under- or overuse of inflexible social routines and lack of plasticity for learning new, more adaptive, social automatisms. We briefly review past research supporting this view and propose a program of research to test our hypothesis. This approach might alleviate a variety of mental problems of individuals who suffer from inflexible automatizations that stand in the way of adjustable and intuitive social behavior, by increasing posterior cerebellar plasticity using noninvasive neurostimulation or neuro-guided training programs
    corecore